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Summary , o

Work during the initial half of the grant period centered on three
areas in the general field of digital processing signéls. These included
1, Recursive Techniques for Digital Signal Processing —

2, Data smoothing and compression
3. Computer simulation of low error rate communication systems,.

In addition, an intensive effort was begun in the general area of
digital processing for adaptation of communication systems.

The work on recursive techniques has concentrafed on extending in
two directions recenf prior work on the detection of binary signals in
addi£ive noiselz |

a) the inclusion of colored noise with numerator dynamics into
the previous digital formulation, |

| b) the effect of approximating necessary differential operations
by sample differences, We report here in detail only on topic a).
The work on topic b) will be reported on in detail in the next report,

In the recursive technique the test statistic on which signal
decigsions are based is generated recursively by means of a first-order
difference eéuation. This results -in minimizing the memory requirements
and programming effort, Furthermore, the highest wmatrix inversion is
dependent -only on the statistics of the noise and not on the number of
samples takeﬁ. This simplification is made possible by assuming that °
the additive noise is generated as the solution of a linear differenfial
equation driven by white noise. In the prior work referenced, denomina-

tor dynamics only are assumed for the differential equation, The

numerator dynamics mentioned above refer to this linear differential

5




equation associated with the noise,

| The work on data smoothing and compression has'also been cqﬁpentrated
in two areas, The first involves an often-neglected, although highly
significant, problem, that of the appropriate design of a buffer at the
transmitter to haﬁdle the adaptive nature of the smoothed data flow,
In most data compression schemes successive groups of incoming data
samples are used to predict the following samﬁles to come, If the error
between predicted and actual sample values is below a specified fhreshold,
no data is sent, Hopefully this results in significant compression of
the data rate., Various compressive schemes used in practice include
zero-order predictors, interpolators, etec. The problem under study here
is that of controlling the error threshold adaptively to satisfy the
often conflicting requirements of maximum compression, tolerable buffer
storage size, and minimal mean-squared error between the discrete input
data and fhe reconstructed compressed discrete. output data at the re-
ceiver, An iterative dynamic programming algorithm2 has been adopted
here for obtaining the optimum.controller.

As the second area of work on data compression we have attempted

to initiate a comparative study of the various types of compressive
schemes used in practice. The intérpolators and zero-order predictors
noted above are usually quite difficult to analyze theoretically, so
that they are usuall& designed on an intuitive and Eut-and—try basis,
Some limited amount of computer simulation in an attempt to eveluate
the performance of various compressors has been reported on in the litera-
ture, but this doesn't provide much insight into compressor operation. The
work described below in the body of the report represents a first attempt
to gain some insight into the performance of a few data compression

schemes,



The work on computer simulation of low error rate digital cqﬁmunica—
tion systems, begun under a recently-concluded NSF grant, has successfully
demonstrated that computer running time in the simulation process.may be
decreased at least an order of magnitude by using the methods of Extremal
Statistics3 to estimate low probagbilities of error, This work was re-
ported on at the recent 1968 Spring Joint Computer Conferenceq_

The work begun just receﬁtly on digital processing 1in adapt;ve com-
munications has focussed on adaptive equalizers for time-varying random
channels, Most work done in this area in the past few years has concen-
trated on the use of tapped delay line structures for equalization of
telephone channels., In our projected activity we are interested in much
more general applications - to time-varyiang channels, as ncted; to an-
tenna array processors; to digital processing jointly at traunsmitter and
recéiver, etc., We are also stressing the digital processing aspect,
using algorithmic formulations of the problem,'and employing more rapidly
converging search procedures,

Details of this past activity appear in the sections following,

1. Recursive Techniques for Digital Signal Processing

In a recent paper1 Pickholtz and Boorstyn described a recursive
approach to signal detection, The scheme was based on the following,
The received signal ‘was converted into a vector Markov process which
was then sampled, The recursive structure of the digital processor
followed readily. Of concern here are two aspects of this problem,
First, in order to form a vector Markov process derivatives of the in-
coming signal are usually required. Iﬁvestigations have been conducted

into replacing these differentiation operations with approximating



digital operations, such as differences, These studies, including-simula-
tion results, indicate that it is possible to replace derivatives with dif-
ferences without adversely affecting performance. Details willvaﬁpear in
the next report.

Secondly, the previous paper considered a special type of ﬁgise -
that generated by a linear diffefential equation driQen by white noise,

A more general noise descripfion would include numerator dynamics, Work -
has been initiated extending the recursive approach in this direction.

The essential part of the recursive receiver is fo convert the in-
coming signal plus noise [r(t) = s(t) + y(t)] into a vector Markov pro-
cesSAin suéh a manner that information is not destroyed. If this is done
by a linear processor then the output of this device is @(t) =g (t) +jE(t)
where the noise component f&(t) is to be Markov, Furthermore we insist
thaf r(t) be recoverable from @(t). Because of the linearity we need
only consider the noise term, In the originai work ZE(t) consiste@ of
the derivatives of y(t) as well as y(t) itself and setisfied both of
the above requirements, |

We now consider y(t) to be generated by the following differential

equation
a n n-1 -1 ﬂL
9SS - S &
dt k=0 dt =O at™

where w(t) is white Gaussian noise. It is possible to find a state
vector x(t) for this system such that the first component xi(t) = y(t).
This vector is the solution of

x(t)

A(t) x(t) + b(t) w(t)
T
S

y(t) x(t)

‘where ¢ =

Oeses OO




Although x(t) is Markov it cannot be obtained from y(t) alone - either
w(t) or f(tO) is needed in addition (neither are available). We ‘consider

next the best mean-square estimate of x(t) given the input y(s), s < t.

Thus

A
x(t) = B[x(t) [ y(s), 5 ¢ ]

. A o ~ .
Since xl(t} = y(t), y(t) can be recovered from x(t) - it is reversible,
[urthermore because of the Caussian assuumption Q(t) is obtained by a

. _ ~
linear operation on y(t). Finally we shall show that x(t) is Markov
A
and thus letting qg(t) = x(t) satisfies our requirements.
Proof: For some fixed T let z(t) = E [f(T), y(s), sit] . E(t)
is a Martingale, x(t) can be written in terms of the state transition

matrix ép(t,u).

; T

x(T) = (T,t) x(t) + (T,u) blu) w(u) du,

xm = gz« (T Gaw b
Then _z_(t) ‘= @(T,t) g(t) +jT @('T,u) E(u) E [w(u) y(s), s_{t] du,

t
But the last term is zero since w(t) is white and udt, " Thus E(t> =
A -

é@(T,t) E(t),or gkt) = é@ 1(T,t) E(t)' To show Markovity consider

E [2&)]5(:), res ] = B 20200, £gs]

= @-I(T,t) E [E(t)lg(r), rﬁs] = @_1(T,t) z(s)

because z(t) is a Mertingale,

Next E [>,_’é<t>j'5<s>] = E [_}E(t)lg(s):}=@_l(T,t) E [_z_<t>!_z_<s>] = é‘lcT,w z(s).

Thus E [f(t)/fcr), rés] = E [g(t){E(s)] ' and g(t) since Gaussian

is Markov,



The recursive receiver will now consist of a device that estimatés
x(t) given y(t) [this will actually operate on r(t) ﬁo yield g(t§] -
some form of a Kalman filter, The remainder of the. receiver willjparale
lel the originallwork. This study is éontinuing.

2, Data Smoothing and Compression

a, Optimal Adaptive Control for Data Compression Systems,

ot

The object here is to determine an optimal controller to minimize
the mean squared error between discrete input data, L and reconstruc-
ted compressed discrete output data, yn. We plan to evaluate the op-
timum controller soluéion and minimum normalized rms error for several
data‘models and compressor algorithms, The present.plan is to use a
uniformly distributed independent data model and the uniformly distribu-
ted first order Markov data model, The compressor algorithms under con-

sideration are both the zero and first order predictors and interpolators,

Tables or curves will be obtained from computer runs and will list the
compressor aperture, K, vs, buffer f£fill or state, S, and the miniwmum normal-
ized rms error for several values of the following parameters: b, the number
of input amplitude bits,L, the buffer length, and C, the transmission

: ratio, With these data, the designer will be able to select suitable
parameters to satisfy his data compression and fms error requirements,
As a check on the optimal controller sqlution, the data models

and data compression system using the corresponding optimal controller

solution will be simulated on a computer to measure the actual normalized

rms error., As a test of the sensitivity of the optimal controller solu-

tion to the input data statistics, the first order Markov data will be



fed into systems optimized for independent data, and independent‘daté
will be fed into systems optimized for first order Markov data. JFinally,
real telemetry data will be obtained, if possible, aﬁd fed into these
optimized systems to determine the practical use of the chosen data models,
‘?rogress thus far consists of the following: The controlier;ﬁuffer

system has been modeled as a discrete Markov.pfocess and a method of solu-
tion adopted using an iterative dynamic programming algorithm based on
the work of Howardz. Once the statistics of the input process

xn, n=0,1,.., and the compressor algorithm have been specified, an
optimum controller can be determined using this technique.

For the case of uniformly distributed independént input data and

the zero order prediction compressor algorithm, the problem of determin-
ing the optimum controller has been solved, The solution is in an itera-
tive form and is best computed on a general purpose digital computer for
all possiﬁle values of interest of the various parameters noted above,
The iterative solution has been programmed in FORTRAN on a digital
computer and is presently being debugged., The status of the programming
is: writing in FORTRAN completed; program cards punched, verified and
listed; diggnostic errors are being eliminated from initial compilatioms.
In order to check the program results, one test case for the specific
values of b=1, L=4, and C=2 was computed by hand yielding a mean squared

error, e2=1/26, and the following controller rules:

S(Buffer State) K(Aperture)

0 0 1
1 0 =
2 0 c=2
3 1 e 2=1/26



For the case of uniformly distributed first or@er Markov input
data and the zero order prediction compression algorithm, the soiution
of fhe problem of determining the optimum controller is ﬁresently Being
attempted, The complexity of tﬁe mathematics in the Markov case is
many times greater than that of the independent case,

b. Comparison of data compression scheh@s.

It is quite apparent that if signals to be transmitted were stationary
and perfectly bandlimited, there would be no data compression prgblem.
One would sample at the Nyquist rate and transmit these samples, or coded
versions of them. No further data compression would be possible., Real
signéls do not behave this way; however, They are generally not band-
limited and their statistics are either not known or varying in a non-
stationary manner, How does one then perform dat; compression? One
good'engineering technique is to first oversample to some extent and

then use various types of predictive techniques to reduce the redundancy.

. . . 5
Such methods are now well known and have been summarized in the literature.

But these various cut-and-try procedures offer no real insight into
the problem of data compression, In‘an attempt to analyze these various
schemes and others that may be developed we have chosen to pick some-
signal models that deviate from the perfectly bandlimited Qne, providing
some complexity of structure to make them meaningful yet sufficiently
simple to enable analysis to be carried out, The two simplest models
reported on here are a stationary gaussian random process, an a discrete
Nth order Markov process, For both classes of models and attempt is
made to relate the mean-squared reconstructio

for various compressor schemes,




(1) Gaussian process x(t), Here we assume a power spectral density

2
Sx(m) R P ' \
and autocorrelation function
R_(t) = e k¢
X

Assume samples are taken uniformly every T sec, Several methods of re-

constructing the original signal have been compared, These include vari

Q

usg
sampling techniques as well as predictive techniques;

(a) sinx/x reconstruction. Here the transmitted samples are passed
through a lowpass filter with bandwidth B = 1/2T.‘ It is then fbund that

the mean-squared reconstruction error is given by

‘ 2 1 X
=2 - - -
;7 (1 - tan - )

[¢)) pre—ﬁiltering to B =7%; prior to sampling, then fhe same recons-
. truction méthoa.as above, The mean-squared error is then found to be one-
" half that above:

e? = (1 - % tan ! %), with pre-filtering,
(c) An alternate reconstruction technique, due to Tuftse, that

minimizes ;7 where pre-filtering is not used. For this case

e2 = cothT - %

(d) A finite Karhunen-Lodve representation of the random process

x(t)., Here the representation x(t) is given by

N
X(t) =5~ a P (1) 0<t4 T

n=l
where g 7 - second piece of x(t) is taken and the yg(t)'s are fixed

orthonormal functions, The N discrete numbers an are the numbers to be




transmitted and are random variables, ‘'he orthogonal functions Yi(t)

are chosen to minimize the mean-squared error power

<
2 1 A 2
e’ = = E {\{: [x(t) - x(t)] dt}

The resultant expression for e2 vs, Z?N (time between samples for this
technique) is obtained as the solution of transcendental equations, and
is shown plotted in Fig. 1 for (= 4 and 10 sec, Also plotted for

. comparison are the sampling techniques mentioned above.

Note that for this particuiar power spectrum the pre-filtered,
sin x/x reconstruction technique is the best of the four shown, but is
very closely followed by the Kérhunen—Loéve technique,

How do these techniques compare with the ad hoc compressive schemes
that are used in practice? As noted earlier these are in general hard
to analyze; but Ehrman7 has obfained the approx?mate theoretical mean
" time between transmitted samples for three common techniques5 - the
floating aperture éero-order predictor, the zero-order interpolator, and
the Can (Lirst ordor) intorpolator, asnuming a gaunsion Markov signal
source as done here, liis rosults, valid only [or small sampling intervals

on the average, and adapted to the example taken here, are

2

e 0.67 E(T) floating aperture predictor
2 . 0.33 E(T), zero-order predictor,

[0]
¥

ol

0.28 E(T), fan interpolator,

‘e
In all three cases, BN, tho hall aporiure widiha Ax are aasumod
small compared to the standard deviation of the signal process (which
is unity here), and the reconstruction error is assumed uniformly dis-

tributed between + AX.



As a comparison with the sampling and Karhunen-Loeve techniques-'
described above, we may assume T and T/N <<1 in the equations given

earlier. It is then found that )

2

e = j% . T = 0,203 T, sampling with pre-filtering and élnx
T
reconstruction,
e2 = 0,405 T, sampling without pre-~filtering and with SLoX
reconstruction, ~
e2 = 0,333 T, sampling without pre-filtering and using Tuft's

optimum reconstruction,

"2 . 2 -
e =— 2J= 0,203 = , Karhunen-Lodve expansion,
T~ N ‘ N,

Note that sampling with pre-filtering and the Karhunen-Ldeve expansion
give.almoat identical results, and that they are better than the predictor
and interpolators; It must also be pointed ouf the the latter techniques
require the transmission of timing information, so that the advantage of
sampling is even greater than indicated above. We do not mean to imply,-
however, that the aperture techniques ar; inferior; there may be other
signals on which they perform better thaq'sampling. The adaptivity and
relative simplicity of the aperture £echniques are factors in their favor,

(2) Discrete state Markov source,

An N-state Markov chain has been assumed, and both the zero-order
predictor ‘and kthe zero-order interpolator have been considered, Two
cases have been analyzed: first, with the aperture width less than the
spacing bétween adjacent source levels, so that there is no reconstruc-
tion error; second, with the aperture greater than the source level

- spacing, with +1 level reconstruction error allowed,



The compressibility of the source symbols, as measured by the entropy
in bits/source symbols, is then found for the zero-order predictor to be

given by : , .

H + H
H = X R bits/source
zop 1+E (n)
whére

Hx is the information content of the transmitted sample values,

HR is the information content of the run length between trans-

mitted samples, ‘ . - W
and E(n) is the average run léngth. i
!
Average run lengths for a zero-order predictor with no allowable
error operating on a discrete state Markov source have previously been
computed by Stanley and Liu8. Using their results, and assuming as an
example, a particular 15 state Markov chain possessing a uniform sta-
tionary distribution, and chanactérized by a relatively large probability
of remaiﬂing;in the same state or going to an-.adjacent state, the source
entropy is calculated to be
2,73 bits/symbol,
For a zero-order predictor, with no reconstruction error, we also find
E(n) = 1,05 symbols

log,15 = 3.9/bits |

H =

X |

Hy = 2.04 bits ' ©
. |

H = 2,91 bits/source symbol, ’ ‘

zop

Thus, a zero-order predictor used with_efficient coding can achieve a
trensmissionnrate fairly close to the entropy of this particular source.
This method has been extended to the case where the aperture is
greater than the source level spacing. vFof example, suppose +1 level.re-

construction error is allowed, The probability of a run of length n




within the aperture about a level 1is eaéily calculated, Once thg run
leﬁgth proabilities have been found the entropy may'be computedi@s above.
It has also been shown that the run length probabilities for a zero-order
interpolator may be written in terms of powers of sub matrices of the
Markov transition'matrix. For the example considered above, the expected
run lengths following one of the "interval'" states of the source for the
zero-order predictor and interpolator with illlevel'error are

E_(n)zop = 2,10 symbols,

E(n)zoi = 2,62 symbols,

While the work described above has barely scratched the surface of

the problem, it.at least provides a little insight into the performance

of the simple, data compression techniques,

3. Computer simulation of low error rate digital communication systems

The average error rate serves as a very common measure of performance
for digital communication systems, with a probability of error of less
than 10-5 a desirable goal in.most system design, With such low error
rates, however, the usual Monte Carlo simulation techniques require
very large numbers of simulation runs, a costly procedure, ' Using the
methods of extremal statistics3 to estimate low probabilities of error
we have been able to reduce the usual nﬁmber of simulation runs by at
least an order of magnitude, a highly encouraging result,

The field of extremal statistics is concerned with the occurrence
of rare events, exactly the problem encountered in simulating low efror
rate communication systems, Previous applications to communications
have auwphanlzad the sualynls of data obtainad Lrom existing systemsg’l?
Thus, use has beoen mada, Iu analyzing those data, of special plotting

paper developed by Gumbela. Our approach has differed in assuming from



the beginning that all calculations were to be madé by a high s?eed
computer; that time was of the essence; and that we wgre interested in
applying the theory to the simulation of broad classes of systems,
Extremal stafistics relies on the fact that many common probability
distribution functions ére asymptot ically exponential: the probébility

of exceeding a specified value out on the tail of the distribution is

1

e—é;n(xo_un)
n

of the form P(x>xo) = . The two parameters cih and u_

depend on the underlying distributionj n represents the number of samples

" available of the random variable under study, and is assumed very large,

The fwo parameters may also be shown to be closely related to the asymp-
totic (large numbers of samples) maxima of the randowm variable
under study,

‘If one is now interested in estimating'small probabilities of error,
say of the order of 10"3 or 10—4, it may be poésible instead to first
estimate much higher probabilities, say 10-2. If the exponential ap-
proximation is valid one should then be able to extrapolate down to the
desired probability, Instead of the usual number of samples required
to estimate a small probability of error, one can work with & much
smaller number., One major difficulty, however, is that with the under-
lying pr&bability density function unknown (as it generally is in complex
systems to be simulated), = and u_ are unknown and must be estimated.

In the computer simulations carried out the results were nonetheless

quite encouraging: including cowputer time necessary to estimate the

nnramnrlbara an oar
paLannials ail &

normal catlwntion procedures, In these computer experiments known



statistics were first generated to determine the applicability of the
extremal approach, including estimation of the paraméter; These sta-
tistics included the gaussian (normal), Rayleigh, and exponential

density functions, Various methods of estimating cin and u including

maximum likelihood iteration, were compared,. Twenty samples were found

ae b
L

©

- 3 + ! ; . At dmad ~F - ~Aam
ici aia u &stiliaces oL came
to be sufficient to estimate Okr\d 0 s oA .
within 10% of the known values, while those of u were within 3%, well

within the confidence limits calculated theoretically., Using n=500
samples, the total number of samples required was 500x20=104. With

this number‘we were able to successfully extrapolate down to probabilities
of error of_lO—u and evén lowe; (Qith rapidly decreasing accuracy of
course), This compares with previous estimation of probabilities of 10-3
using 104 samples,

The ﬁetgods studied were then applied to the simulation of two
digital feedback communicatisn systems of considerable current interest.
One is a binary signalling system, using sequential decision feedback,
The other is an M-ary PAM system, with information feedback: Both sys-
tems may have potential usefulnesé in space-ground communications: De-
tails of the feedback schemes are inciuded in the work reported on at
the 1968'Spring Joint Computer Conferenceu. In both cases simulation
results agreed well with calculated approximate system performances.

Further study boeyond the work reported on has focusnod on the
tradeoff possible batwoen n, Lhe number of samples used, and N, the

A winimai toral number of

nuber neaded Lo eastimabe 2 and 1

n n

samples, nN, may readily be seen to exist for given underlying prob-



ability distribution, confidence limits, and the range of probability

of error to be estimated. For decreasing n allows better estimation of
oA and u  as N ;ncreases, but the rahge of exfrapolation over whieh
one would expect the asymptotic exponential approximation to hold de-
creases, Similerly, as n increases thé range, K of the desired probability
of error is approached more closely, but gin and u_ are less accurately

estimated,
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